MATHEMATICAL MORPHOLOGY - THEORY AND APPLICATIONS

Mathematical morphology is a well established methodology for the analysis of geometrical structures. Its theoretical roots are based on set theory, topology, stochastic geometry, lattice theory, nonlinear partial differential equations, etc. Mathematical morphology is applied to process digital images and other forms of spatial structures as graphs, surface meshes, data clouds, etc.

Mathematical Morphology - Theory and Applications is an Open Access electronic journal publishing either purely theoretical advances, or new ways of applying mathematical morphology to real-world problems.

The journal serves also as a forum open to other related mathematical image processing approaches as discrete geometry, topological imaging and scale-space models.

The authors submitting their papers to Mathematical Morphology - Theory and Applications will benefit from fair and constructive peer review provided by recognized experts in the field, Open Access to article for all interested readers, fast online publication of articles and no publication fees for the first two volumes.

SCOPE

Coverage includes:
- Algebraic Theory: Morphology on complete lattices and semilattices, Representation of morphological operators, Fuzzy morphology, Connected operators, Morphology on graphs, Morphology on Surface Meshes and Riemannian manifolds.
- Nonlinear Scale Space Theory: Morphological decompositions, Morphological PDEs, Level set methods, Morphological wavelets, Morphological regularization.
- Discrete Geometry and Combinatorial Topology: Grids, Discrete objects, Discrete model properties, Digitization schemes, Metrics, etc.
- Random sets Theory and Geometrical Probability: Boolean model for sets and functions, Stochastic simulation of random media, etc.
- Image Filtering: Colour and multi-channel morphology, Morphology on tensor fields, Geodesic transformations, Adaptive morphology, Attribute filtering.
- Image Segmentation: Watershed segmentation, Hierarchical segmentation, Colour and multi-channel image segmentation, Texture segmentation, Clustering of spatial data.
- Computational Mathematical Morphology: Algorithms, Architectures, Data structures and programming paradigms for efficient implementation of morphological operators.
- Applications: Geoscience and remote sensing, Biomedical imaging, Materials science, Data analysis, Document processing, Content-based information retrieval, Video surveillance, Industrial control, Visualisation, etc.

EDITOR-IN-CHIEF
Jocelyn Chanussot, Grenoble Institute of Technology, France
Email: mathm.editorial@degruyteropen.com

EDITORIAL ADVISORY BOARD
Akira Asano, Kansai University, Japan
Junior Barrera, University of São Paulo, Brazil
Isabelle Bloch, TELECOM ParisTech, France
Bhabatosh Chanda, Indian Statistical Institute, Kalkota, India
Marcin Iwanowski, Warsaw University of Technology, Poland
Cris Luengo, Uppsala University, Sweden
Dominique Jeulin, MINES ParisTech, France
Fernand Meyer, MINES ParisTech, France
Christian Ronse, Université de Strasbourg, France
Jos Roerdink, University of Groningen, The Netherlands
Philippe Salembier, Technical University of Catalonia, Barcelona, Spain
Hugues Talbot, ESIEE and Université Paris-Est, France
Iván R. Terol-Villalobos, CIDETEQ, Mexico

HOW TO SUBMIT:
mathm.editorial@degruyteropen.com

JOURNAL’S HOMEPAGE:
www.degruyter.com/view/j/mathm